新澳门中特网站合法吗,二四六天天好(944cc)46天彩,彩色港彩全年历史图库,2025天天开好彩免费大全,2025正版跑狗图

Bearing interference fit calculation

10 Jan,2018

A bearing ring rotating relative to the load should be mounted with an interference fit to avoid slipping of the ring. The interference fit will then reduce the effective clearance of the bearing. Temperature and centrifugal forces will have an additional influence on the effective clearance and the properties of the interference fit. An online calculation of interference fits considering interference, temperature and centrifugal forces is provided .

Usually the interference fit is calculated using thick ring theory assuming two cylindrical rings and plane stress. The interference between the parts is determined by manufacturing tolerances and some embedding due to surface roughness can be considered. DIN 7190 (2001) proposed a reduction of effective interference by 0.8*Rz, which was reduced to 0.4*Rz in DIN 7190 (2017). The sum of surface roughness of the two parts in contact should be considered, but as in most cases the bearing ring will have a much smoother surface than the shaft and the housing, it should be sufficient to consider the surface roughness of the shaft/housing only.

For the calculation of the interference fit the ratio of inner and outer diameter of each ring is required. For the outer diameter of the inner ring and the inner diameter of the outer ring, the question is, how to determine this diameter. Some bearing catalogs mention the raceway diameters others an average diameter between raceway diameter and the shoulders.

To get an estimate about the influence of the shoulders of the bearing rings on the change of effective clearance an axisymmetric FEA calculation was added to the MESYS bearing calculation software. The diametral expansion on the outer contour of the ring is shown in a diagram in comparison to the calculation of cylindrical rings according to thick ring theory. Two options are considered for thick ring theory. Either the pitch diameter plus/minus ball diameter Dpw±Dw is used for the second diameter of the ring or a diameter leading to the same cross section area as the real cross section including shoulders.

                                 Figure 1 Expansion of a 71910C with interference Iw = 13 μm and n = 0 rpm

Figure 1 shows the diametral expansion of a 71910C bearing inner ring considering an interference of Iw = 13 mm and speed zero. The solid line shows the expansion of the outer contour of the ring according to the FEA calculation, the dotted line shows the expansion using thick ring theory and a diameter for the equivalent cross section and the dashed line shows the expansion for thick ring theory and the outside diameter Dpw-Dw.

It can be seen that the expansion in the middle of the bearing is very close to the value not considering the shoulders and the value at the left shoulder is closer to the value for the equivalent cross section. It should be noted, that the difference is about 0.3 mm, so the effect of unreliable smoothing of the surface roughness is larger than this variation.

                             Figure 2: Expansion of a 71910C with interference Iw = 13 μm and n = 30000 rpm

Figure 2 shows the result of the same example, but with rotation speed of 30000 rpm. Here the expansion of the equal cross section case is larger than in the case without considering the shoulders. The reason is the larger mass and the larger effective diameter for the centrifugal forces.

Figure 3 shows the mesh used in these two calculations. The width of the shaft is a little larger than the bearing width as it is in real applications. Quadratic elements are used.

                           Figure 3: The FEA mesh used for above calculations

For the same example a hollow shaft with inner diameter dsi = 30mm instead of a solid shaft is considered in figures 4 and 5. Figure 4 shows a larger difference for the two cases based on thick ring theory. The case with equivalent cross section is too stiff here. Including centrifugal forces the differences are small again.

                     Figure 4: Expansion of a 71910C with interference Iw = 13 μm, n = 0 rpm, and dsi = 30 mm
              Figure 5: Expansion of a 71910C with interference Iw = 13 μm, n = 30000 rpm and dsi = 30 mm

These examples show that the consideration shoulders for the calculation of fits is not required in many cases and a calculation using a simplified approach with Dpw±Dw can lead to more accurate results for low speed cases. Still mostly the differences are much smaller than the effect of surface roughness would be.

If a shaft width equal to the bearing width would be used, the expansion of the ring based on the FEA calculation would be smaller and closer to the results considering the equivalent cross section. But as in real applications the shaft and housing width is larger than the bearing width in almost all cases, this was assumed for the FEA calculation, too.

Contact Us

Address:Room 1306, Building 7, Xingguang International Financial Center, Development Zone, Liaocheng City
Tel:0635-8263099
        0635-8262099
Email:admin@aglzc.cn

Online Inquiry
Company Name*
Name*
Phone*
E-mail*
Message
Copyright ? 2018 - Shandong Ao Gang Lian Bearing Co., Ltd. Technical Support - Bearing.cn ICP:鲁ICP备19054627号-1
主站蜘蛛池模板: 49629澳彩开奖查询图库最新| 澳门惠泽网659259.com| 神算子论坛马会资料大全| 美国版咒怨和日本版咒怨| 2024年澳门天天开好彩最新版| 澳门49码开奖是正规吗| 不用网络也能玩的网页游戏| 黄大仙一肖一码100%准| 中国人泡妞www免费| 今期香港开奖结果记录| 75767实澳门正版资料| 2022恐怖片排行榜前十名电影| 澳门出特宗合走势图| 2021年澳门资料免费大全258| 到法国的快运| yy光棍电影网| 新澳天天彩免费大全| 2023新澳门今晚开奖| 新奥彩今晚开奖记录结果| 新澳门彩天天开奖资料一| 澳门6和彩| 2025新澳门黄大仙| 今晚开什么码澳门开奖| 人人看免费高清影视| 808影院网电视剧高清| 49图库免费资料大全澳门码 | 成人欧美电影网| 推荐一些免费追剧软件| 澳门六合最新资料| 十五选五开奖结果今日| 热门菜谱大全| 13262con澳门开奖网站| 澳门精准一肖一码一码欢迎回来| 杀手黎明电视剧在线观看| 2022年澳门正版资料大全免费下载| 少年派第一集免费观看全部看完| 澳门六彩资料网站| 香港历史开奖记录完整版记录 | 澳门六开全部免费资料下载| 香港全年免费资料大全正| 49217澳彩开奖查询36期|