新澳门中特网站合法吗,二四六天天好(944cc)46天彩,彩色港彩全年历史图库,2025天天开好彩免费大全,2025正版跑狗图

The Path of Least Resistance—Roller Bearing Damage in VFDs

12 Jun,2025

1.png

Bearing damage due to electric current in variable frequency drives (VFD) is well understood as a general concept. What is not yet fully developed are the models that better predict when a system is at risk and where we should be looking for early signs of damage. Aegis (grounding rings) has, for years, provided great documentation outlining the need for an insulated / conductive pairing in VFDs due to various currents involved. In the chart below, shaft voltage discharge and high frequency circulating currents are typically what we are looking for.

Rotor to ground current is often damage caused by an improperly grounded test cell.

Adding the primary shaft of the gearbox to the image above and it becomes apparent that without mitigation, shaft voltage could be carried into the gearbox side bearings. It is less likely that circulating current would make it to the gearbox side as the path would need to include going through a gasket or bolts connecting the cover and housing.

To understand where the current would likely travel with an unprotected system, we must understand the loading conditions. The primary protection for bearing current is the lubrication film in each bearing. The thicker the film, the higher the capacitance. Film thickness is determined by temperature, speed and load—and other minor contributors such as age of oil, surface finish and specific grades of steel. With a connected main shaft like this, our problem is greatly simplified because speed among the bearings is the same and we can assume temperature is similar—at least at the bearing race locations. Now we just need to understand loading conditions. Though various proposals for formulas exist, generally everyone agrees with some form of the relationship:

Running a few different scenarios through a full model gives us an intuitive relationship between the three primary drivers of fluid film thickness. Increasing temperatures reduces oil viscosity and reduces film thickness as a result. Increasing load reduces film thickness as the race and balls are forced together. Increasing speed increases film thickness as the hydrodynamic pressure increases. The Hertzian range or ellipse is a function of the applied load and bearing geometry. This is directly proportional to the resulting pressure of each ball. Considering each ball in the load zone has a different load/pressure and every bearing has a unique geometry, we can see this problem can become quite complex. However, if we only look at the maximum pressure of each bearing in our simplified model, it becomes easier to understand.

If we assume our capacitance model is correct and we have enough shaft current to damage a bearing, we can see that, under load, there is potential for the current to travel through Bearing 2 as it has the highest pressure. We now have some ideas of where to concentrate our efforts in looking for bearing damage to see if we have early sign of electrical damage. This is not just limited to the motor bearings, but also in the adjacent gearset bearings. It is important to understand that not all electrical damage looks the same. We can see everything from a minor dulling of ball sheen to full tactile—audible noise—fluting.

Does the theory match reality? Can stray motor currents find their way to the gearbox? They absolutely can. In real testing with unprotected motor and gearbox bearings, a unit was exhibiting gearbox bearing noise signals. Upon inspection, Bearing 2 had clear indications of light fluting (could not feel with bare skin, but was picked up on vibration) along with the elusive “tiger stripes” found on the input gear.

Finding these early signs of damage gave an early clue that our gearbox was not properly protected and allowed adequate time to implement the corrections. Had these indications not been found early on by looking at the gearbox side, it could have risked launch timing down the road.

ny traction motor can pose a risk to unprotected bearings—though typically, severe damage is more common with motors above 100 kW. Depending on the overall power and individual motor characteristics, sometimes just a grounding ring OR an insulated bearing on the non-drive side of the motor is adequate protection. In higher power motors, both an insulated bearing on the non-drive end of the motor and a grounding ring on the drive side of the motor may be needed. Both are costly upgrades, so it is tempting to avoid adding the needed upgrades. At the very least, ensure you are package protected for a grounding ring and have a plan for implementation if or when it is needed. Many electrical damage signs may not manifest at lower temperature testing as the oil is thicker and may be enough to protect the bearing. Likewise, simply spinning an unloaded motor at high speeds may mask future potential issues. It is imperative that you test under high-load and high-temperature conditions to determine if the system is at risk.

Contact Us

Address:Room 1306, Building 7, Xingguang International Financial Center, Development Zone, Liaocheng City
Tel:0635-8263099
        0635-8262099
Email:admin@aglzc.cn

Online Inquiry
Company Name*
Name*
Phone*
E-mail*
Message
Copyright ? 2018 - Shandong Ao Gang Lian Bearing Co., Ltd. Technical Support - Bearing.cn ICP:鲁ICP备19054627号-1
主站蜘蛛池模板: 2023年澳门正版资料大全更新 | 再见我们的幼儿园| 司藤高清在线观看免费| 澳门正版资料免费公开手机 | 澳门49彩开奖结果下载| 三期必中一期精选| 凤凰高清影视首页| 新澳门内部资料精准大全大三吧| 新澳彩免费公开资料| 717电影网秋霞网7q| 防汛应急救援预案| 资料大全正版资料\| 2023澳门精准一肖| 澳门六下彩开奖历史记录| 118开奖论坛澳门2008| 一码资料准确率100| 新澳门2025今晚开什么| 澳门管家婆今日最新的消息| 新澳门6合和彩开奖结果| 2025最新免费资料大全| 澳门老奇人资料免费大全| 2024年澳门管家婆三肖100%| 澳门最快开奖网站| 物流物流运输| 澳彩2023开奖记录查询结果| 香港澳门资料大全 正版资料2023年| site:jhmc888.com| 2024年香港今晚开奖029期| 泛目录2024站群| 2005新澳正版免费大全| 免费追剧软件不用vip| 机器人启示录| 澳门彩龙门客栈解码图管家婆| 澳门富烧二码中特| 我想和你好好的电视剧在线观看| 澳门中特网(神奇传说)| 澳门最准最快的网站| 体育类核心期刊排名| 9494港澳沧坛六尾中特| 拜见岳父大人2| 2023澳门正版资料查询|