新澳门中特网站合法吗,二四六天天好(944cc)46天彩,彩色港彩全年历史图库,2025天天开好彩免费大全,2025正版跑狗图

Spindle Bearings—Potential Damaging Mechanisms and Mitigation

01 Mar,2024

4.png

Exploring contact conditions in both steel-steel and hybrid ceramic bearings

Introduction

Application conditions of super-precision spindle bearings can be represented in a simple way by a diagram involving bearing speed and bearing load. Bearing speed is represented by the quantity ndm where n is the bearing rotational speed in rpm and dm represents the bearing mean diameter in mm. In this schematic diagram (Figure 1) different application conditions can be distinguished. Bearing load is better represented by the maximum Hertzian contact pressure (Ph) in the inner ring of the heaviest loaded rolling element. In this diagram several application areas (platforms) can be found: (i) performance, (ii) extreme and (iii) ultrafast.

Bearings in this schematic might have different damaging mechanisms according to their relative position respect to load and speed axes. It is important to understand these mechanisms to properly select a bearing. In the present article the main damaging mechanisms covering all regions of Figure 1 will be explained, besides some potential solutions or mitigation actions will be mentioned.

Performance Series

The operation zone here is the classical one for “standard” super-precision bearings, steel-steel and hybrid ceramic. Typical damaging mechanisms here are indentations and surface distress. Looking in detail of each one of them follows.

Solid Particle Indentations

For a solid particle to be damaging in a bearing contact, it must be entrapped and it must be big enough to create an indentation. The hardness of the particle also plays a role, hard-brittle particles will chatter and will create very tiny but sharp indentations, softer particles (metals and fibers) will create indentations with rise material around (shoulders), see Figure 2. However, fiber particles in general will produce very shallow indents (basically negligible). The process of indentation has to do with the material of the particle and the material of the raceway, the harder the particle the smaller but the sharper and deeper the indentation becomes. The harder the raceway the shallower the indent that will be created. There are many works in literature that show indentation mechanisms from particles. However, entrapment and indentation together have been studied in the past by SKF. In Ref. 1 a simple entrapment model is derived for assumed spherical particles, but it can be generalized to any geometry because the relevant geometrical aspect is the local radius of curvature of the particle. With this model the plot of Figure 3 has been obtained, where the maximum diameter of the particle that can be entrapped is given as a function of the rolling bearing diameter and the coefficient of friction between the rolling bearings walls (raceway) and the particle.


Contact Us

Address:Room 1306, Building 7, Xingguang International Financial Center, Development Zone, Liaocheng City
Tel:0635-8263099
        0635-8262099
Email:admin@aglzc.cn

Online Inquiry
Company Name*
Name*
Phone*
E-mail*
Message
Copyright ? 2018 - Shandong Ao Gang Lian Bearing Co., Ltd. Technical Support - Bearing.cn ICP:鲁ICP备19054627号-1
主站蜘蛛池模板: 延津县| 平果县| 新安县| 象山县| 铜山县| 漳平市| 达尔| 平度市| 嵩明县| 眉山市| 青河县| 射阳县| 卫辉市| 临沧市| 南陵县| 延川县| 平泉县| 芦溪县| 郁南县| 龙门县| 山东省| 喀什市| 醴陵市| 轮台县| 甘南县| 阳江市| 北流市| 安陆市| 富民县| 德昌县| 乳源| 凤翔县| 泊头市| 射洪县| 华容县| 同江市| 满城县| 邯郸县| 商都县| 故城县| 吴堡县|