新澳门中特网站合法吗,二四六天天好(944cc)46天彩,彩色港彩全年历史图库,2025天天开好彩免费大全,2025正版跑狗图

Combustible dust: what you need to know

13 Mar,2024

3.png

Koen Oostvogels provides an introduction to combustible dust

The airborne dust created by many manufacturing facilities that generate, handle, transport, process or store materials that cause or become combustible dust is no mere housekeeping problem. Once those particles have settled in difficult-to-reach places throughout a site, any subsequent disturbance can produce a potentially explosive dust cloud.

The creation of a risk mitigation plan is therefore necessary for most facilities - including many that would not traditionally be considered ‘dangerous.’ Along with studying legislation requirements in your region, reducing the likelihood of an incident is the best possible step, beginning with ‘Is my dust actually combustible?’

This isn’t as straightforward as it might sound. Few people would smoke a cigarette while refuelling their car, yet many wouldn’t think twice about lighting up while taking a break from working on home renovations that have produced an abundance of sawdust.

Any fine material that can catch fire when mixed with air is a potential risk. Examples include most solid organic materials (sugar, flour, wood, etc.), metals, and more. In fact, even partly oxidised aluminium dust generated from plasma cutting can be considered explosive under certain circumstances – only a proper risk assessment can provide reassurance.

Sending a sample of your dust to a qualified lab is a good place to start. If it’s shown to be combustible, further tests will determine if it’s explosive, how quickly that can happen, and how much force it can carry. This information will help direct the selection of equipment needed to mitigate the hazard.

The explosion pentagon – risk management strategies

While managing any one or more of the well-known Fire Triangle’s elements of oxygen, heat and fuel can decrease the fire risk, explosion risk-management strategies must consider another two elements. Dust dispersion and dust confinement produce the Explosion Pentagon – and may require a separate strategy to address any remaining explosion risks.

The Explosion Pentagon’s fuel element is the finely dispersed dust cloud. As a rule of thumb, a cloud dense enough to screen your hand from view would be considered a risk – or, in more practical terms, a dust layer of just 0.5mm. But, rather like how propane gas is only dangerous between 1.8-8.4% concentration volumes in the air – particle size is a key factor. Germany’s Occupational Safety & Health Institute documents outline the results of its testing of a variety of dust samples, including their particle size and concentration required to allow combustion.

Sawdust, for example, is generally only a risk when smaller than 63 microns – the finer the dust, the more reaction surface it has with oxygen – and in a concentration above 30g/m3. So, let’s say the smoker we mentioned earlier has been working in a 150m3 room, and there’s a 0.5mm layer of dust on the 50m2 floor. That would result in 0.025m3 of dust, and, at a typical density of 600kg/m3, that equates to 15kg, which, if it became airborne, would produce a dust concentration of 100 g/m3 – creating an obvious danger.

Knowing the properties of your dust is paramount. Three main parameters should be tested; the first being Pmax, or the maximum pressure that can be reached on the basis of particle size. Next is the speed with which the pressure rise occurs, bearing in mind that this will vary according to room or vessel volume. Multiplying that pressure rise by the volume provides the Kst, which enables us to standardize how fast the pressure rises and define four risk categories: from St0 (does not explode) to St3 (very strong explosion). It should be noted, however, that a weaker St1 explosion is no less dangerous than an St3 event.

The final main parameter concerns knowing the minimum required ignition energy, which will enable safer handling. Other parameters include glowing temperature, whether the dust is conductive, and whether self-ignition is possible. All of these factors are very specific to a particular dust generated in a particular process, so seeking professional advice is always recommended.

Planning for safety

Once you have determined the combustibility of your dust, you can develop a plan to mitigate the risks in your process. First, although good housekeeping is only a partial solution, audit your process to identify where nuisance dust is generated, released, or accumulates – and deal with it. These often include intake and mixing locations, bag dumps, welding or cutting stations, beams, and light fixtures. In each location, analyse the production processes, housekeeping practices, dust control measures, and potential ignition sources present.

Bear in mind that when dust builds up in several locations, a flame front can create a pressure wave that leads to a chain reaction, dislodging and feeding on more dust as it moves through the building – as happened during the notorious Imperial Sugar plant explosion that killed 14 people. Also, a supposedly empty vessel is usually more dangerous than a full vessel – so, for example, opening an inspection hatch on a silo may cause lingering deposits on ledges to become airborne and increase risk.

Even the equipment employed to mitigate the problem can be a danger zone, with dust collectors being responsible for 30% of such explosions. Cleaning the filter media or emptying dust bins can also create locally dangerous dust clouds.

Many standards and codes may influence decisions on dust control, including local, state, and European regulations. Knowing the regulations that apply to your facility is critical, and process owners should always research the regulatory requirements in their area.

As of July 2003, there are two directives issued by the European Union that are related to the protection of employees and equipment from risks related to potentially explosive atmospheres 1999/92/EC and 2014/34/EU (ATEX Directives).

ATEX directives make it clear that the responsibility for evaluating the risks and creating an explosion protection document lies with the employer/process owner. Process owners are responsible for the selection of their combustible material management strategy and to assure compliance with all applicable codes and standards.

Having decades-long experience in providing high-quality dust collectors that have become an integral part of many plants’ combustible dust mitigation strategies, Donaldson can help review process owners’ mitigation strategies and provide the optimal dust collection solution for their chosen strategy.


Contact Us

Address:Room 1306, Building 7, Xingguang International Financial Center, Development Zone, Liaocheng City
Tel:0635-8263099
        0635-8262099
Email:admin@aglzc.cn

Online Inquiry
Company Name*
Name*
Phone*
E-mail*
Message
Copyright ? 2018 - Shandong Ao Gang Lian Bearing Co., Ltd. Technical Support - Bearing.cn ICP:鲁ICP备19054627号-1
主站蜘蛛池模板: 狂飙电视剧免费观看星辰影院| 塞尔维亚公布巴黎奥运名单| 谁说我不在乎| 电影免费观看在线高清完整版| 2023年澳门码最新开奖记录图| 给朱丽叶的信完整版| 2023澳门六免费资料查询| 804影视网影视在线| 听是你喜欢我电视剧免费观看 | 全世界最好的你免费观看完整版高清| 澳门一肖一码100准免费资料2024| 新澳门一码资料| 电影《首尔之春》搅动韩国政坛 | 坏姐姐之拆婚联盟| 新奥全部开奖记录查询| 澳门天天彩六合网| 5555577777王中王心水| 333电影网影视在线| 2024澳门大事| 有你有我电视剧免费观看| 不轻易狗带什么意思| 2012喜上加喜| 49629澳门资料大全怎么118| 澳门王中王100%期期中2024年| ios最全的免费追剧app不用会员| 澳门铁算盘(48369_com)| 香港内部精准资料一码| 澳门资料独家精准四肖| 长相思第一集免费观看高清在线| 澳门金牛版免费资料站| 香港综合出号走势| 9420免费高清在线观看国语| 不用网络的游戏无限金币版| 澳门六开奖结果查询表| 澳门大三巴精准免费大全| 澳门资料www909063com| 吃瓜网最新地址观看| 澳门精准四肖四码必中特| 六给彩票香港开什么号| 333电影网WWW迅雷| 2025新澳门历史开奖查询|