新澳门中特网站合法吗,二四六天天好(944cc)46天彩,彩色港彩全年历史图库,2025天天开好彩免费大全,2025正版跑狗图

The Path of Least Resistance—Roller Bearing Damage in VFDs

12 Jun,2025

1.png

Bearing damage due to electric current in variable frequency drives (VFD) is well understood as a general concept. What is not yet fully developed are the models that better predict when a system is at risk and where we should be looking for early signs of damage. Aegis (grounding rings) has, for years, provided great documentation outlining the need for an insulated / conductive pairing in VFDs due to various currents involved. In the chart below, shaft voltage discharge and high frequency circulating currents are typically what we are looking for.

Rotor to ground current is often damage caused by an improperly grounded test cell.

Adding the primary shaft of the gearbox to the image above and it becomes apparent that without mitigation, shaft voltage could be carried into the gearbox side bearings. It is less likely that circulating current would make it to the gearbox side as the path would need to include going through a gasket or bolts connecting the cover and housing.

To understand where the current would likely travel with an unprotected system, we must understand the loading conditions. The primary protection for bearing current is the lubrication film in each bearing. The thicker the film, the higher the capacitance. Film thickness is determined by temperature, speed and load—and other minor contributors such as age of oil, surface finish and specific grades of steel. With a connected main shaft like this, our problem is greatly simplified because speed among the bearings is the same and we can assume temperature is similar—at least at the bearing race locations. Now we just need to understand loading conditions. Though various proposals for formulas exist, generally everyone agrees with some form of the relationship:

Running a few different scenarios through a full model gives us an intuitive relationship between the three primary drivers of fluid film thickness. Increasing temperatures reduces oil viscosity and reduces film thickness as a result. Increasing load reduces film thickness as the race and balls are forced together. Increasing speed increases film thickness as the hydrodynamic pressure increases. The Hertzian range or ellipse is a function of the applied load and bearing geometry. This is directly proportional to the resulting pressure of each ball. Considering each ball in the load zone has a different load/pressure and every bearing has a unique geometry, we can see this problem can become quite complex. However, if we only look at the maximum pressure of each bearing in our simplified model, it becomes easier to understand.

If we assume our capacitance model is correct and we have enough shaft current to damage a bearing, we can see that, under load, there is potential for the current to travel through Bearing 2 as it has the highest pressure. We now have some ideas of where to concentrate our efforts in looking for bearing damage to see if we have early sign of electrical damage. This is not just limited to the motor bearings, but also in the adjacent gearset bearings. It is important to understand that not all electrical damage looks the same. We can see everything from a minor dulling of ball sheen to full tactile—audible noise—fluting.

Does the theory match reality? Can stray motor currents find their way to the gearbox? They absolutely can. In real testing with unprotected motor and gearbox bearings, a unit was exhibiting gearbox bearing noise signals. Upon inspection, Bearing 2 had clear indications of light fluting (could not feel with bare skin, but was picked up on vibration) along with the elusive “tiger stripes” found on the input gear.

Finding these early signs of damage gave an early clue that our gearbox was not properly protected and allowed adequate time to implement the corrections. Had these indications not been found early on by looking at the gearbox side, it could have risked launch timing down the road.

ny traction motor can pose a risk to unprotected bearings—though typically, severe damage is more common with motors above 100 kW. Depending on the overall power and individual motor characteristics, sometimes just a grounding ring OR an insulated bearing on the non-drive side of the motor is adequate protection. In higher power motors, both an insulated bearing on the non-drive end of the motor and a grounding ring on the drive side of the motor may be needed. Both are costly upgrades, so it is tempting to avoid adding the needed upgrades. At the very least, ensure you are package protected for a grounding ring and have a plan for implementation if or when it is needed. Many electrical damage signs may not manifest at lower temperature testing as the oil is thicker and may be enough to protect the bearing. Likewise, simply spinning an unloaded motor at high speeds may mask future potential issues. It is imperative that you test under high-load and high-temperature conditions to determine if the system is at risk.

Contact Us

Address:Room 1306, Building 7, Xingguang International Financial Center, Development Zone, Liaocheng City
Tel:0635-8263099
        0635-8262099
Email:admin@aglzc.cn

Online Inquiry
Company Name*
Name*
Phone*
E-mail*
Message
Copyright ? 2018 - Shandong Ao Gang Lian Bearing Co., Ltd. Technical Support - Bearing.cn ICP:鲁ICP备19054627号-1
主站蜘蛛池模板: 内部二肖二码| 天下精英资料员澳门| 新澳开奖直播官网| 看澳门彩资料| 澳门全年开奖历史记录表查询| 澳门四肖八码最新版本号| 澳门开奖结果历史开奖记录全年大全| 奥门2024正版资料| 天线宝宝澳彩资料库| 站直啰!别趴下| 2024澳门开奖结果出来 | 澳门100%最准的一肖| 花间令电视剧免费观看星辰影院| 二四六天天彩资料大全网最新2024| 新澳门彩2024年资料大全| 澳门精准资料大全免费经典版亮点| 白雪姬杀人事件| 两个人看的电影高清在线观看免费| 澳新彩242期开奖结果| 洞庭渔隐图高清| 澳门正版资料免费大全2021年澳| 杀出黎明电视剧全集免费收看| 星汉灿烂电视剧在线观看免费高清 | 2024奥门资料大全免费| 香港2024精准生肖| 澳门精选六肖| 韩国的获奖电影| 789电影网喜剧大全| 我的野蛮女友2| 澳门特马好网站精准| 韩国2023限制级电影| 2o24澳门资料免费| 免费观看视频www| 澳彩开奖资料| 澳门新六开彩资料查询最新开奖结果| 9528电影网| 2024澳门六合资料| 精准特马资料大全| 澳门一码一肖一特一中直播开奖42期| 香港铁算盘Ww201818C0m| 好的手机网络游戏|